About 11,100,000 results
Open links in new tab
  1. Stable Diffusion BASICS - A guide to VAE : r/StableDiffusion - Reddit

    May 31, 2023 · The VAE is what gets you from latent space to pixelated images and vice versa. There's hence no such thing as "no VAE" as you wouldn't have an image. It hence would have …

  2. What's a VAE? : r/StableDiffusion - Reddit

    Nov 28, 2022 · A VAE is a variational autoencoder. An autoencoder is a model (or part of a model) that is trained to produce its input as output. By giving the model less information to …

  3. VAE(变分自动编码器)优势在哪里? - 知乎

    其次,我们深入理解下vae的原理:vae是一种无监督的生成模型,其理论基础是建立在高斯混合模型之上。 由VAE的模型结构,我们可以看到噪声编码 z 是由一个标准正态分布所产生的向 …

  4. 各种生成模型vae gan diffusion有什么独特之处?分别擅长在什么 …

    “vae的潜在空间能够捕捉到图像的主要特征,从而生成具有相似结构的全新图像。 下面是一些应用场景: 人物动作生成 :在CVPR'24的一篇论文中,提出了一个框架,能够生成人物动作,精 …

  5. Explanation of vae-ft-mse-840000-ema : r/StableDiffusion - Reddit

    Mar 6, 2024 · I think anime folks use a different VAE. This has been kind of simplified and complicated at the same time by the fact that most community models have been baking the …

  6. 为什么vae效果不好,但vae+diffusion效果就好了? - 知乎

    指出,已经更正为“VAE”。SD原文3.1节中同时提供了VAE和VQ-VAE两种方案,VAE效果更好所以被大家一直沿用)之所以效果这么好,主要还是因为diffusion model强大。强大到用diffusion …

  7. "Couldn't find VAE named sd-v1.5.vae" : r/StableDiffusion - Reddit

    Mar 7, 2023 · If you want Automatic1111 to load it when it starts, you should edit the file called "webui-user.bat" (right click, open with notepad) and point it to your desired VAE adding some …

  8. [D] Is VAE still worth it? : r/MachineLearning - Reddit

    The "VAE" in the context of latent diffusion isn't really a VAE. It's more like a glorified downsample-upsample model. It's more like a glorified downsample-upsample model. If you …

  9. quick noob question: should I use another VAE? Where to get

    Mar 8, 2023 · VAE applies picture modifications like contrast and color, etc. so using one will improve your image most of the time. VAE can be mostly found in huggingface especially in …

  10. Latent Diffusion中VAE的kl weight该如何选择? - 知乎

    在Latent Diffusion中,VAE里KL散度(KL divergence)权重(weight)的选择很关键。 当KL散度权重较大时,例如在1e - 4或1e - 5这样的值: - 潜在空间分布:模型会更倾向于让潜在空间的 …

Refresh