About 2,920,000 results
Open links in new tab
  1. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    如何通俗易懂地讲解什么是 PCA(主成分分析)? 博主没学过数理统计,最近看 paper 经常遇到,但是网上的讲解太专业看不懂,谁能通俗易懂的讲解一下,主成分分析作用是什么?

  2. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    如何通俗易懂地讲解什么是 PCA(主成分分析)? 博主没学过数理统计,最近看 paper 经常遇到,但是网上的讲解太专业看不懂,谁能通俗易懂的讲解一下,主成分分析作用是什么?

  3. PCA图怎么看? - 知乎

    PCA结果图主要由5个部分组成 ①第一主成分坐标轴及主成分贡献率主成分贡献率,即每个主成分的方差在这一组变量中的总方差中所占的比例 ②纵坐标为第二主成分坐标及主成分贡献率 ③ …

  4. R统计绘图-PCA分析绘图及结果解读 (误差线,多边形,双Y轴图、 …

    Apr 27, 2022 · 虽然PCA和RDA分析及绘图都写过教程,但是对于结果的解释都没有写的很详细,刚好最近有人询问怎样使用FactoMineR factoextra包进行PCA分析。所以使用 R统计绘图- …

  5. 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别在哪里? - 知乎

    但在ICA之前,往往会对数据有一个预处理过程,那就是PCA与白化。 白化在这里先不提,PCA本质上来说就是一个降维过程,大大降低ICA的计算量。 PCA,白化后的结果如下图所示。 可 …

  6. 怎么理解probabilistic pca? - 知乎

    1、PCA的两种理解:最大化方差、最小化投影损失 这部分理解比较常见,公式的推导也比较容易,可以用拉格朗日乘子法发现两种理解的最终解相同。

  7. 知乎 - 有问题,就会有答案

    知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

  8. 什么时候使用PCA和LDA? - 知乎

    PCA与LDA的区别: (1)PCA是无监督模型,利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值; (2)LDA是有监督模型,假设了 各 …

  9. 在主成分分析法中,是否对样本容量的多少有规定?样本容量是不 …

    当你这么做的时候,你就是在做PCA了。 具体怎么找这个平面呢,在概念上,你首先找到数据点分布范围最广、即方差最大的那个方向(上图绿色箭头),然后在剩下的与其垂直的所有方向中 …

  10. 统计学中的潜在因素模型 (Latent Factor Model) 和主成分分析 …

    PCA完全等价于去中心化的SVD,和SVD相比他只关心方差的变化,去掉了本身的偏置。 而Latent Factor Model又被称作SVD,但是它和pureSVD还是有区别的,首先LMF只用2个矩阵,而SVD …